a=2(100)/2.483^2

Simple and best practice solution for a=2(100)/2.483^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a=2(100)/2.483^2 equation:



a=2(100)/2.483^2
We move all terms to the left:
a-(2(100)/2.483^2)=0
We get rid of parentheses
a-2100/2.483^2=0
We multiply all the terms by the denominator
a*2.483^2-2100=0
Wy multiply elements
2a^2-2100=0
a = 2; b = 0; c = -2100;
Δ = b2-4ac
Δ = 02-4·2·(-2100)
Δ = 16800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{16800}=\sqrt{400*42}=\sqrt{400}*\sqrt{42}=20\sqrt{42}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{42}}{2*2}=\frac{0-20\sqrt{42}}{4} =-\frac{20\sqrt{42}}{4} =-5\sqrt{42} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{42}}{2*2}=\frac{0+20\sqrt{42}}{4} =\frac{20\sqrt{42}}{4} =5\sqrt{42} $

See similar equations:

| 2w-4/6=3 | | 5^3x+1=25x+1 | | 8=2n+6 | | 20x-16=4x=0+18 | | 3.4y+3.8=12.3 | | 1(3x+3)= | | 2x-6(x+4)=8 | | 2x+14=5•x-6 | | 20=r+-5 | | 21=3x+21 | | –2(x+4)2–3=–75 | | r+-18=-14 | | -7-8(-7a-6)=209 | | 4.4=y/4 | | a/4=17 | | r-8=41 | | d•24=-12 | | 5x−(8x−2)=4−2x | | 2x-3.9=14.2 | | 9=|-5x+8| | | 55x=1550 | | -4l+5(190-2l)=-39.8 | | k-15=45 | | 5(2-d)=3(-d+2) | | 9(x-2)+8(x+2=2 | | -2y-3.1=1.7 | | 8c+13=85 | | 3(2y+3)=6(y+3)-9 | | (1/2)x+3=-5 | | 25w=-625 | | -4+8=-5x | | -x+20=4 |

Equations solver categories